Speed of saccade execution and inhibition associated with fractional anisotropy in distinct fronto-frontal and fronto-striatal white matter pathways.

نویسندگان

  • Katharine N Thakkar
  • Fiona M Z van den Heiligenberg
  • R S Kahn
  • Sebastiaan F W Neggers
چکیده

Fast cancellation or switching of action plans is a critical cognitive function. Rapid signal transmission is key for quickly executing and inhibiting responses, and the structural integrity of connections between brain regions plays a crucial role in signal transmission speed. In this study, we used the search-step task, which has been used in nonhuman primates to measure dynamic alteration of saccade plans, in combination with functional and diffusion-weighted MRI. Functional MRI results were used to identify brain regions involved in the reactive control of gaze. Probabilistic tractography was used to identify white matter pathways connecting these structures, and the integrity of these connections, as indicated by fractional anisotropy (FA), was correlated with search-step task performance. Average FA from tracts between the right frontal eye field (FEF) and both right supplementary eye field (SEF) and the dorsal striatum were associated with faster saccade execution. Average FA of connections between the dorsal striatum and both right SEF and right inferior frontal cortex (IFC) as well as between SEF and IFC predicted the speed of inhibition. These relationships were largely behaviorally specific, despite the correlation between saccade execution and inhibition. Average FA of connections between the IFC and both SEF and the dorsal striatum specifically predicted the speed of inhibition, and connections between the FEF and SEF specifically predicted the speed of execution. In addition, these relationships were anatomically specific; correlations were observed after controlling for global FA. These data suggest that networks supporting saccade initiation and inhibition are at least partly dissociable. Hum Brain Mapp 37:2811-2822, 2016. © 2016 Wiley Periodicals, Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study.

The increase in working memory (WM) capacity is an important part of cognitive development during childhood and adolescence. Cross-sectional analyses have associated this development with higher activity, thinner cortex, and white matter maturation in fronto-parietal networks. However, there is still a lack of longitudinal data showing the dynamics of this development and the role of subcortica...

متن کامل

Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography.

INTRODUCTION Repetitive behaviour and inhibitory control deficits are core features of autism; and it has been suggested that they result from differences in the anatomy of striatum; and/or the 'connectivity' of subcortical regions to frontal cortex. There are few studies, however, that have measured the micro-structural organisation of white matter tracts connecting striatum and frontal cortex...

متن کامل

Diffusion tensor imaging reveals white matter abnormalities in Attention-Deficit/Hyperactivity Disorder.

The specific brain structures or neural mechanisms underlying dysfunction in individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) are not well established, particularly in regard to white matter (WM). Diffusion tensor imaging (DTI) was used to investigate WM in 12 adolescent males diagnosed with ADHD only and 12 typically developing controls (group matched; mean age=15.64 years, SD=...

متن کامل

Reduced fronto-temporal connectivity is associated with frontal gray matter density reduction and neuropsychological deficit in schizophrenia.

OBJECTIVES A "disconnectivity model" of schizophrenia has been proposed, but it is still unclear if white matter abnormalities are associated with gray matter changes and if they may be the anatomic substrate of cognitive impairment, which is a core symptom of the disorder. The first objective was to detect if white matter microstructure alterations in schizophrenia are associated with or indep...

متن کامل

Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2

Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 37 8  شماره 

صفحات  -

تاریخ انتشار 2016